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The authors show how the use of inequality constraints on parameters in structural equation
models may affect the distribution of the likelihood ratio test. Inequality constraints are implicitly
used in the testing of commonly applied structural equation models, such as the common factor
model, the autoregressive model, and the latent growth curve model, although this is not
commonly acknowledged. Such constraints are the result of the null hypothesis in which the
parameter value or values are placed on the boundary of the parameter space. For instance, this
occurs in testing whether the variance of a growth parameter is significantly different from 0. It
is shown that in these cases, the asymptotic distribution of the chi-square difference cannot be
treated as that of a central chi-square-distributed random variable with degrees of freedom equal
to the number of constraints. The correct distribution for testing 1 or a few parameters at a time
is inferred for the 3 structural equation models mentioned above. Subsequently, the authors
describe and illustrate the steps that one should take to obtain this distribution. An important
message is that using the correct distribution may lead to appreciably greater statistical power.
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Structural equation modeling (SEM) has become an impor-
tant statistical technique in behavioral and educational sci-
ences. In the past few decades, the number of quantitative
research publications incorporating SEM has grown exponen-
tially. With roots dating back to work on path analysis (Wright,
1918), factor analysis (Thurstone, 1947), and their combination
(Jöreskog, 1973; Keesling, 1972; Wiley, 1973), SEM’s attrac-
tiveness is largely due to its flexibility in specifying and testing
hypotheses about linear relations among both observed and
latent variables in one or more groups.

A key aspect of SEM is the assessment of the overall fit
of the proposed model. Consequently, considerable theoret-
ical and empirical effort has been devoted to the investiga-
tion and development of measures of overall model fit. In
contrast, the test of specific model parameters has received

relatively little attention in the SEM literature (but see
Gonzalez & Griffin, 2001; Neale & Miller, 1997). If the
model with a constraint on one or more parameters may be
regarded as being nested within the model without the
constraint, a chi-square-difference test (i.e., a likelihood
ratio [LR] test) is often performed to test the tenability of
the constraint.1 The value of the test statistic is compared
with a central chi-square distribution with degrees of free-
dom equal to the number of parameter constraints. Although
this standard practice does produce correct results for many
parameters (i.e., regression coefficients, factor loadings,
factor covariances), it may lead to incorrect results, specif-
ically, incorrect p values, for certain classes of parameters.

These classes consist of parameters that are implicitly or
explicitly constrained. Variance parameters, with admissible
values being equal to or greater than zero, constitute one such
class; correlations with admissible values between –1 and �1
constitute another. Such so-called boundary parameters are of
special interest in estimation and testing of commonly applied

1 Alternatively, the Wald test may be used to test the statistical
significance of a set of parameters. However, as pointed out by
Neale and Miller (1997; see also Azzalini, 1996; Gonzalez &
Griffin, 2001), the Wald test has the drawback that the results
depend on the parameterization. Here, we consider only the LR
test as it does not have this deficiency.
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structural equation models such as the common factor (CF)
model (Van der Sluis, Dolan, & Stoel, 2005), the quasi-sim-
plex model (Jöreskog, 1970; Rovine & Molenaar, 2005), and
the latent growth curve (LGC) model (Laird & Ware, 1982;
McArdle, 1986, 1988; Meredith & Tisak, 1984, 1990; Willett
& Sayer, 1994). On the other hand, boundary parameters may
be the result of explicit inequality constraints imposed by the
researcher to test a specific hypothesis of interest, for instance,
the constraint that an unstandardized regression coefficient is
smaller than one. Many of the current SEM software packages
allow for such user-specified bounds.

The possible effects of inequality constraints in the psycho-
logical SEM literature have not, to our knowledge, been dis-
cussed in any detail. Gonzalez and Griffin (2001, p. 263) did
note that “the likelihood ratio test should not be performed
when one parameter is tested at a boundary,” but they did not
go into any detail. In the econometric and behavior genetic
literature, on the other hand, the effects of parameter bounds,
usually on variance components, upon the null distribution of
the LR test have received considerable attention (e.g., Carey,
2005; Chernoff, 1954; Crainiceanu & Ruppert, 2004; Domi-
nicus, Skrondal, Gjessing, Pedersen, & Palmgren, 2006; Self &
Liang, 1987; Sham, 1998; Shapiro, 1985; Stram & Lee, 1994).
Stram and Lee (1994), in particular, discussed the asymptotic
behavior of LR tests of variance components in the longitudi-
nal mixed effect model described by Laird and Ware (1982).
Although this longitudinal mixed effect model of Laird and
Ware is very similar to LGC models (Rovine & Molenaar,
2000), Stram and Lee’s results do not seem to have been
picked up in the SEM literature, except for the single remark in
Gonzalez and Griffin (2001). Moreover, even if the problems
of boundary parameters in SEM were fully recognized, to
determine the exact nature of and solution to the problem is no
simple matter. The aim of the present article is, therefore, to
demonstrate how the imposition of inequality constraints on
parameters may affect the asymptotic distribution of the LR
test in the classes of commonly used models mentioned above.

On the basis of the work of Self and Liang (1987) and Stram
and Lee (1994, 1995), the correct distribution for testing one or
a few boundary parameters at the same time is inferred, and it
is shown that the asymptotic distribution of the LR is often not

the standard central chi-square distribution. It is shown that this
distribution is a mixture of central chi-square distributions. For
complicated multiparameter tests, simulation procedures are
discussed, by means of which the (mixture) distribution of the
LR statistic may be inferred. The major message of this article
is that the traditional distribution of the test statistic (with
degrees of freedom equal to the number of constraints, i.e., the
naı̈ve test) has too heavy a tail in all situations. In other words,
traditional p values tend to be greater than the p values of the
true distribution, leading to too-conservative hypothesis tests.
In certain complicated testing situations, such as those encoun-
tered in CF analysis and LGC analysis, the asymptotic bias of
the naı̈ve test and the effect on the statistical power may be
quite substantial.

Illustration

To illustrate the problem, we consider the data provided by
Bast and Reitsma (1997) in their article on the comparison of
growth curve models and quasi-simplex models. The data
consist of measurements on reading comprehension measured
on four occasions with 235 children. Bast and Reitsma fitted a
simple linear growth curve model using normal theory maxi-
mum-likelihood estimation. From their results, it can be in-
ferred that there is substantial variation in the level factor (i.e.,
intercept) but that both the covariance between level and
growth rate (i.e., slope) and the variance of the growth rate
factor do not differ significantly from zero. Table 1 contains
the results of a reanalysis of the covariance matrix provided in
the article by Bast and Reitsma.2 The chi-square difference

2 Please note that, to ensure that our reanalysis of the data
corresponded exactly with the analysis of Bast and Reitsma
(1997), only the covariance structure was modeled and that the
mean structure was saturated. In a strict sense, this model is not
true a growth curve model. It can, however, be easily shown that
including the mean structure in the model would not change the
distribution of the likelihood statistic for testing a variance com-
ponent because the means can be regarded as nuisance parameters
in this test (see the section entitled Asymptotic Distributions of the
LR Test Statistic in Specific Situations, below).

Table 1
Parameter Estimates of Three Growth Curve Models on the Reading Comprehension
Data of Bast and Reitsma (1997)

Parameter Model 1 Model 2 Model 3

Var(level) 10.490 (1.52) 10.277 (1.44) 10.047 (1.43)
Var(growth rate) .020 (.01) .018 (.01) 0
Cov(level, growth rate) �.043 (.10) 0 0
ε1 � ε2 20.876 (1.73) 21.132 (1.73) 22.008 (1.69)
ε3 � ε4 17.739 (1.68) 17.687 (1.68) 19.346 (1.52)
�2(df) 6.577 (5), p � .25 6.793 (6), p � .34 9.552 (7), p � .22
��2(df) .22 (1), p � .66 2.76 (1), p � .10

Note. These models were refitted to the covariance matrix only. N � 235. Standard errors are presented in
parentheses. Var � variance; Cov � covariance.
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between Model 2 and Model 1, testing the covariance between
the level and the growth rate, equals 0.22. The common prac-
tice of relating this chi-square difference to a chi-square ran-
dom variable with one degree of freedom does not lead to a
rejection of the null hypothesis (p � .64). Subsequently, the
chi-square difference between Model 2 and Model 3, in which
the variance of the growth rate is fixed to zero, equals 2.76
(p � .097). Given an alpha level of .05, it may be concluded
that the covariance between level and growth rate and the
variance of the growth rate are not significantly different from
zero. In other words, the null hypothesis that individual differ-
ences in growth are absent cannot be rejected.

However, as mentioned above, the distribution to which
the chi-square difference should be referred need not be that
of a chi-square random variable with degrees of freedom
equal to the number of constraints. To show what the correct
distribution of the chi-square difference looks like in the
situation of Bast and Reitsma (1997), we performed two
small simulation studies, one for each test. In the first
simulation study, we generated 5,000 datasets.3 The param-
eter estimates under Model 2 were used as the population
values of the model according to which the data were
generated. This implied that the covariance between level
and shape factor would be equal to zero in the population.
Subsequently, both Model 1 and Model 2 were estimated for
each simulated data set, and the chi-square difference be-
tween the two models was computed. Figure 1A displays
the empirical density of the 5,000 simulated chi-square
differences for testing whether the covariance between level
and growth rate would equal zero. This distribution is very
similar to the �2(1) distribution. The mean and variance of
the empirical distribution are 1.03 and 2.08, close to the
expected values of the �2(1) distribution of 1 and 2, respec-
tively. So, here, we do not encounter a problem. The second
simulation study consisted of a similar procedure, in which
5,000 datasets were generated but now under the null hy-
pothesis that both the variance of the growth rate and the
covariance between level and growth rate were equal to
zero. The parameter estimates of Model 3 were thus used as
the population values, and Model 2 and Model 3 were
estimated on each of these 5,000 datasets. The empirical
distribution of the chi-square difference is displayed in
Figure 1B; the mean and variance of the empirical distribu-
tion are 0.51 and 1.23. It is immediately apparent that this
distribution does not correspond to the distribution of a
�2(1) random variable. Below, we explain why the tail of
this distribution is lighter than that of a �2(1) distribution.

In conceptual terms, these results can be understood as
follows. An estimated parameter in SEM is assumed to have
an asymptotic normal sampling distribution. This means
that a parameter estimate can take any value. For instance,
an estimated covariance by itself has no constraints regard-
ing the value it can take because it can be negative, zero, or
positive,4 so there appears to be no violation of the normal-
ity assumption. Supposing that the true covariance in a

population is zero, one then has a .5 chance of finding a
negative estimate of the covariance. If, in a simulation
study, the difference in likelihood of the model with the
covariance fixed to zero and the model with the covariance

3 All corresponding scripts (for Mplus3 [Muthén & Muthén,
2004] and R [R Development Core Team, 2005]) can be down-
loaded from the Psychological Methods Web site. Although we
used Mplus3 for our Monte Carlo simulations and SEM analyses,
in principle, any other SEM package could have been used.

4 Note that a covariance parameter may be subject to constraints
originating from the requirement that the covariance matrix, which
contains the covariance parameter, be positive (semi-)definite.

Figure 1. A: Density of the 5,000 simulated chi-square differ-
ences for testing whether the covariance between level and growth
rate equals zero (solid line) and density of the �2(1) distribution
(dashed line). B: Density of the 5,000 simulated chi-square differ-
ences for testing whether the variance of the growth rate equals
zero (solid line) and density of the �2(1) distribution (dashed line).
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freely estimated is computed in each sample, one would
expect a negative covariance in 50% of the samples. Both
negative and positive covariances contribute to this distri-
bution. Thus, given a sufficiently large sample size and
number of replications, this distribution would approach a
central �2(1) distribution.

If the parameter represents a variance, on the other hand,
the estimate of this parameter should not be negative.5 The
implied censoring of the parameter’s distribution, implicit
in the definition of a variance parameter, results in a viola-
tion of the asymptotic normality assumption. Without the
imposition of a constraint, one has a .5 probability of
obtaining a negative estimate if the true value of the vari-
ance in the population is zero. This can be illustrated with
the Monte Carlo simulation in which Model 2 (i.e., H1) is
estimated while Model 3 is the true model (i.e., H0). A
negative estimate of the variance of the growth rate was
obtained in 2,529 of the 5,000 samples.6 Because a negative
variance is inadmissible, this has to be corrected by con-
straining the parameter estimate to the closest value of the
admissible parameter space, which is zero,7 the same value
it has under H0. If the chi-square difference between H0 and
H1 is computed in each sample of the simulation, it will be
equal to zero in approximately 50% of the samples because
the likelihood of the model under H1 is then equal to that
under H0. Consequently, the distribution of the test statistic
for testing the variance has half of its mass (i.e., the area
under the curve) at the value of zero, and the remaining half
follows a �2(1) distribution. In other words, the test statistic
follows a .5:.5 mixture of a �2(0) and a �2(1) distribution.

Note that, as a consequence, the common practice of
relating the chi-square difference to a �2(1) distribution
leads to a relatively conservative test in the analysis of the
Bast and Reitsma (1997) data. At a significance level of .05,
the critical chi-square in the correct distribution is equal to
2.71, instead of 3.84 in the �2(1) distribution. To emphasize
this further, the chi-square difference in the analysis of the
true data set is equal to 2.76. In other words, had the correct
distribution been used, one would have concluded that the
variance of the slope factor was significantly different from
zero. Although the analysis as reported by Bast and Reitsma
leads to the conclusion that there are no interindividual
differences in growth rate of reading comprehension, our
results suggest the contrary, namely, that there are differ-
ences between individuals in the amount of growth of
reading comprehension across time.

In the following sections, we show that the empirical
distribution obtained in our simulation study is the correct
distribution to test a single variance parameter, and we
discuss methods to obtain the parameters of this distribu-
tion. The next section provides a technical account of the
problem, and the section after that, Asymptotic Distribu-
tions of the LR Test Statistic in Specific Situations, provides
the correct distributions in commonly encountered cases.
The subsection entitled Testing the Variances of the Growth

Parameters in the Latent Growth Curve Model focuses on
cases in which the aim is to test the statistical significance of
variances in growth curve models. The subsection entitled
Testing the Latent Correlation in the Common Factor
Model focuses on testing whether a simpler CF model
should be preferred to a more complex CF model by means
of constraints on factor correlations, and the subsection
entitled Testing a Quasi-Simplex Model Versus a 1-CF
Model focuses on testing the quasi-simplex model against
the CF model. The subsequent section provides a worked
example of the required steps to obtain the correct results in
a given situation. This article concludes with a discussion.

A Formal Description of the Problem

In the case of the linear growth curve model above, it is
apparent that the value of variance of the growth rate under
H0 (i.e., the variance is equal to zero) lies on the boundary
of the parameter space because a variance cannot assume
negative values. To state this more formally, the null hy-
pothesis places the parameter value on the boundary of the
parameter space defined by the alternative hypothesis, and
this is the reason that the asymptotic distribution of the
chi-square difference (henceforth, the LR statistic) is not
that of a central chi-square-distributed random variable with
one degree of freedom. Because this issue has been ne-
glected in SEM, this section provides a short overview of
the underlying theory of the problem of boundaries. For a
more technical treatment, we refer the reader to Self and
Liang (1987), Shapiro (1985), Stram and Lee (1994, 1995),
and the appendix.

To obtain the asymptotic distribution of the LR statistic,
several parameter sets need to be defined. These sets rep-
resent all possible situations in which parameters may or
may not be on the boundary, and they are associated with a
specific chi-square distribution. For example, in the case of
two boundary parameters, � � (�1, �2), the sets of �1 and �2

may include no parameters on the boundary (e.g., �1 � 0 and

5 For certain classes of models, the problem may or may not be
present depending on the context (see Stram & Lee, 1994, p.
1176).

6 Corresponding to standard model specification in most com-
monly applied SEM software packages, we did not place any
constraint on the variance parameters that may result in negative
estimates of variance parameters (so-called inadmissible or im-
proper solutions).

7 This so-called ad hoc procedure of constraining a negative
estimate of a variance to zero when it turns out to be negative in
a given sample provides the same results as a model in which the
variance parameter is explicitly constrained to be equal to or
greater than zero. These models can be easily analyzed with a
slight modification in model specification in any SEM software
package. Alternatively, a Cholesky decomposition could also be
used.
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�2 � 0), one parameter on the boundary (e.g., �1 � 0 and �2 �
0, or �1 � 0 and �2 � 0), or both parameters on boundary (e.g.,
�1 � 0 and �2 � 0). Each set is associated with a �2(2), a �2(1),
and a �2(0) distribution, respectively. Because it is unknown in
practice which set obtains in a given sample, the asymptotic
distribution of the LR statistic is a mixture of chi-square
distributions, with weights equal to the probability that a spe-
cific set is the true set in a particular sample.

If parameters of interest in the model take boundary
values under the null hypothesis, the distribution is called
the chi-bar-square (�� 2) distribution and can be represented
as follows (Shapiro, 1985, Theorem 3.1):

pr��� 2 � c2	 � �
i � 0

q

wipr��2�i	 � c2	, (1)

where �2(i) is a chi-square random variable with i degrees of
freedom, �2(0) 
 0 (i.e., a point mass at zero also called a �2(0)
distribution), c2 is a critical value, and wi are nonnegative
weights such that w0 � . . . � wq � 1. The chi-bar-square
distribution thus depends on the number of boundary param-
eters in the population because these parameters define the
number of sets as described above. With respect to the simu-
lation example of the section Illustration, above, where the
interest is in testing whether the variance of the slope is zero,
there are two distributions—one in which the parameter is set
to zero (in 50% of the samples) and one in which it is positive
(in 50% of the samples)—so both w0 � .5 and w1 � .5. If the
significance level � � pr��� 2 � c2	 is set to .05, this implies

that �
i � 0

1 wipr��2�i	 � c2	 � .05. If i � 0, pr(�2(0) � c2) � 0

because zero is the only value that exists in this distribu-
tion; if i � 1, pr��2�1	 � c2	 is equal to the right tail
probabilities of the standard �2(1) distribution. So, we have to

solve �
i � 0

1 wipr��2�i	 � c2	 � .5 � 0 � .5 � pr(�2(1) �

c2) � .05, which subsequently leads to pr��2�1	 � c2	 � .10
and to a critical value c2 � 2.71.

Often, the null hypothesis may also contain unconstrained
parameters of interest as well as nuisance parameters. Nuisance
parameters are parameters that are part of the model but do not
feature in the test under consideration.8 For example, in case of
a simultaneous test on the variance of the growth rate and the
covariance between level and growth rate, the nuisance param-
eters are the variance of the level and time-specific residuals,
and the unconstrained parameter of interest is the covariance. If
u is the number of unconstrained parameters of interest, the
expression for the distribution starts at i � u rather than i � 0.
Equation 1 then becomes

pr ��� 2 � c2	 � �
i � u

q

wipr ��2�i	 � c2	. (2)

Instead of a �2(0) distribution, the first term of Equation 2
is a �2(u) distribution.

Determining the Mixture of the Distributions

Suppose that we wish to test a case more specific to SEM
concerning a set of elements of the positive semi-definite
latent variable covariance matrix �. Let �ij be a block
matrix, and let the hypotheses be

H0: � �� �11

0 0 � versus H1: � �� �11

�21 �22 �.

Suppose, furthermore, that �11 is an n � n positive definite
matrix unconstrained under the null hypothesis and that �22

is a k � k matrix.
In a test of variances (such as in an LGC model), the

diagonal elements of �22 are constrained to zero under H0.
In that case, a set of restrictions should be applied to the
elements of �21 and �22 to ensure that � is positive
semi-definite under the alternative hypothesis. The presence
of an element equal to zero in the main diagonal of �22

under the alternative hypothesis implies that this element is
on the boundary of the parameter space under both the null

and the alternative hypotheses. There are u � kn � � k
2 �

unconstrained parameters of interest, representing all the
elements of �21, the subdiagonal elements of �22, and k
parameters of interest whose values may be on the boundary
of the parameter space under the null and the alternative
hypotheses. Note that the u parameters represent elements
of both �21 and �22, and it can be shown that the effect of
the u parameters on the asymptotic distribution of the LR
vanishes asymptotically (Stram & Lee, 1994, 1995). The
resulting asymptotic distribution, in this situation, will thus
be a mixture of k � 1 chi-square distributions with u, u �
1, . . . , u � k degrees of freedom.

In the case of a CF model, the situation is slightly
different from above because the subdiagonal elements of
�22 are constrained under the null hypothesis in such a way
that the correlation between the corresponding factors is
equal to one. If the corresponding factors have a unit vari-
ance, the constraint is simply to set the subdiagonal ele-
ments of �22 to one. As before, the only condition under the
alternative hypothesis is for � to be at least positive semi-
definite. Having an element equal to one (or minus one) in
the subdiagonal of �22 under the alternative hypothesis
implies that � has an element on the boundary of the
parameter space under both the null and the alternative
hypotheses.

The range of values of the n(n � 1)/2 nuisance parame-
ters in �11 is not constrained under either the null or the

8 In general, the nuisance parameters have no effect on the large
sample distribution of the LR statistic, but the unconstrained
parameters of interest do have an effect. However, if a nuisance
parameter is on the boundary, this may have an effect on the
distribution of the LR (see Self & Liang, 1987, Case 8).
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alternative hypothesis. In this case, there are � k
2 � param-

eters in �22 whose values may be on the boundary of the
parameter space under the null hypothesis and the alterna-
tive hypothesis (i.e., the subdiagonal elements of �22). If u
is again the number of unconstrained parameters of interest,
again the resulting asymptotic distribution, in this situation,

will be a mixture of � k
2 � � 1 chi-square distributions with

degrees of freedom equal to u, u � 1, . . . , u � (k � 1)/2,
respectively.

Determining the Weights

Once the number of distributions and corresponding de-
grees of freedom of the mixture is known, the probabilities
of having exactly l(l � 0, . . . , k) parameter estimates on the
boundary in a particular sample must be computed. These
probabilities, mixture proportions, or, henceforth, weights
depend on unknown parameter values and on the informa-
tion matrix of the model under the null hypothesis. Two
methods have been developed to compute the weights:
analytical derivation and Monte Carlo simulation.

Analytical Derivation

If the number of boundary parameters is four or smaller,
analytical methods can be used to compute the weights
(Shapiro, 1985). If the number of boundary parameters
exceeds four, analytical computation of the weights be-
comes difficult because the weights can no longer be ex-
pressed easily in closed form. We refer the reader to Shapiro
(1985) and Self and Liang (1987) for a detailed explanation
of analytical computation.

In a number of situations, the analytical derivation of the
weights is straightforward. In the commonly encountered case
with only one boundary parameter, for example, the weights
can be determined fairly easily by making use of the general
property stated by Shapiro (1985, p. 141): “Weights of com-
ponents with an even number of df, as well as weights of
components with an odd number of df, always sum up to 1/2.”
As a consequence, the asymptotic distribution is a .5:.5 mixture
of two chi-square distributions. If more than one boundary
parameter is involved and the block in the information matrix
associated with these parameters is diagonal (i.e., if the param-
eter estimates are not correlated), the weights of the mixture
distribution follow a binomial distribution with the weight of
each component equal to

� k
df � n �2�k,

where k equals the number of boundary parameters and n
equals the number of nuisance parameters. So, for k � 1, the
weights are .5:.5; for k � 2, the weights are .25:.5:.25; for
k � 3, the weights are .125:.375:.375:.125; and for k � 4,

the weights are .0625:.25:.375:.25:.0625; and so on. Note
also that the general property of Shapiro (1985) holds in-
deed (e.g., for k � 4, .0625 � .375 � .0625 � .5). Unfor-
tunately, the binomial distribution of the weights is not very
useful in SEM because parameter estimates are often cor-
related, that is, the relevant block in the information matrix
is not a diagonal matrix.

Estimation of Weights by Monte Carlo Simulation

When analytical computation of the weights is difficult,
Monte Carlo simulation can be used. Dardanoni and Forcina
(1998, p. 1117) proposed a procedure to obtain fairly accu-
rate estimates by means of Monte Carlo simulation. Their
procedure involves drawing a great number of parameter
vectors from a multivariate normal distribution with mean
equal to the hypothesized parameter values and covariance
matrix equal to the information matrix under the null hy-
pothesis. These simulated parameter estimates may contain
values that lie outside the admissible parameter space. This
procedure is sometimes referred to as projecting the simu-
lated values into the parameter space. Practically, this
means that negative variances are constrained to zero or that
correlations larger than one are constrained to one.

In addition to this procedure, it is also possible to simulate
multiple data sets based on a population model and to count
the number of times that specific configuration of inadmis-
sible parameter estimates occurs. This last type of Monte
Carlo simulation was used above, in the section entitled
Illustration. Both simulation procedures result asymptoti-
cally in the same estimates of the weights. However, in
some situations, the Monte Carlo simulation of data (rather
than parameter values) may be preferable because it does
not assume that the parameters follow an asymptotic mul-
tivariate normal distribution. This assumption may be ques-
tionable in the case of small samples.

In the example above, in the section called Illustration, we
used Monte Carlo simulation of data and found the variance
of the growth rate to be negative in 2,529 of the 5,000 cases.
This corresponds to weights of .5058 for the �2(0) distribu-
tion and .4942 for the �2(1) distribution. These weights
correspond well to the .5:.5 weights by means of the general
property of Shapiro (1985).

Asymptotic Distributions of the LR Test Statistic in
Specific Situations

In the section entitled A Formal Description of the Prob-
lem, above, we showed that the true asymptotic distribution
of the LR is a mixture of chi-square distributions (i.e., the
chi-bar-square distribution) and that this distribution de-
pends on (a) the number of parameters that are placed on the
boundary of the parameter space in the population and (b)
the number of unconstrained parameters of interest. With
respect to the CF model, the boundary parameters are the
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correlations between the factors. In the LGC model, the
boundary parameters are the variances of the growth factors.
With reference to the quasi-simplex model, the boundary
parameters are variances of the time-specific residuals.

In this section, we deduce the mixture distributions of the
LR statistic for the LGC model, the CF model, and the
quasi-simplex model by means of the rules given above. We
refer the reader to Bollen (1989) for a detailed treatment of
SEM in general.

Testing the Variances of the Growth Parameters in
the Latent Growth Curve Model

The LGC model (Laird & Ware, 1982; McArdle, 1986,
1988; Meredith & Tisak, 1984, 1990; Willett & Sayer,
1994) is expressed in Equations 3 and 4:

y � �� � �, and (3)

� � � � �, (4)

with covariance and mean structure

� � ���� � 	�, (5)


y � ��, and (6)


 � �, (7)

where y denotes a p � 1 vector of repeated measurements
of the variable Y, � is a p � q matrix of factor loadings, �
is a q � 1 vector of latent variables, and � is a q � 1 vector
of residuals. The q � q matrix � is the covariance matrix
of �, and the p � p matrix 	ε contains the residual vari-
ances. In the case of a simple linear LGC model, � is a p �
2 matrix constrained in such a way that it contains constants
(e.g., 1, 1, 1, 1, . . .) in the first column and known times of
measurement (e.g., 0, 1, 2, 3, . . .) in the second column.
Vector � in Equation 4 thus contains the population aver-
ages of latent growth parameters (level and growth rate),
and the random vector � contains the deviations of the
individual growth parameters, level and growth rate, from
their respective population means. The random vector �
contains time-specific deviations from the mean growth
curve. � is the model-implied covariance matrix, 
y is the
model-implied vector of observed means, and 
 is a vector
of latent means.

Several useful extensions of the basic LGC model have
been proposed in the literature. For instance, nonlinear
growth can be accommodated by either estimating the factor
loadings for the growth rate in � (McArdle, 1986; Meredith
& Tisak, 1990) or by introducing additional latent variables
representing quadratic (or higher order) growth parameters.
Other important extensions of the basic LGC model are the
combination of two or more growth processes in a multi-
variate LGC model (MacCallum, Kim, Malarkey, &

Kiecolt-Glaser, 1997). In this case, relations of the growth
parameters across processes can be modeled. Below, impor-
tant cases in which boundary parameters affect the asymp-
totic distribution of the LR statistic of the LGC models are
discussed.

Case 1

If the LGC model includes only a level factor, we have a
situation in which n � 0 and k � 1 because the covariance
matrix of the latent variables is a positive scalar under H1

(� � �11, i.e., k � 1 parameter on the boundary, and u �
0 unconstrained parameters of interest). The test of individ-
ual differences thus implies the test of hypotheses H0: �11 �
0 against H1: �11 � 0.9

Distribution. Because k is equal to one, the asymptotic
distribution of the LR statistic is a mixture of k � 1 � 2
distributions with u � 0 and u � 1 � 1 degrees of freedom,
respectively. In other words, instead of being a �2(1) dis-
tribution, the correct asymptotic distribution is a mixture of
a point mass at zero and a �2(1) distribution.

Weights. Because there is only one boundary parame-
ter, the general property of Shapiro (1985) can be applied,
which results in equal weights of .5:.5. Indeed, Monte Carlo
simulation provides a negative estimate of �11 in 50% of the
cases if the number of simulations is large enough. Subse-
quently projecting the negative estimates of �11 into the
parameter space implies that they are constrained to zero in
50% of the simulations. Because the remaining simulations
provide �11 � 0, the resulting weights of the mixture
distribution are equal to .5:.5. The asymptotic distribution
thus becomes a .5:.5 mixture of a point mass at zero and a
�2(1) distribution.

Consequences. Figure 2A presents a graph of both the
mixture distribution and the standard �2(1) distribution. For
a significance level of � � .05, the correct critical value is
equal to 2.71—that is, P��� 2 � 2.71	 � .05 —whereas the
corresponding critical value of the �2(1) distribution has a
nominal p value of .025—that is, P(�� 2 � 3.84) � .025.
Clearly, the correct asymptotic distribution leads to greater
power to reject the null hypothesis if it is not correct. The
statistical package R can be used to compute both critical
values and the nominal p values. The corresponding scripts
can be downloaded from the Web site of Psychologi-
cal Methods.

Case 2

To test individual differences in growth rate in a LGC
model, we have n � 1 and k � 1 because this test implies
the presence of u � 1 unconstrained parameter of interest
(�21) and k � 1 parameter on the boundary (�22) under H0.

The hypotheses to be tested in this case are

9 See Case 1 of Stram and Lee (1994).

445LR TESTING IN SEM WITH PARAMETERS ON THE BOUNDARY



Figure 2. Correct asymptotic distributions of the likelihood ratio with reference to the standard
distributions. A: Solid line—.5:.5 mixture of �2(0) and �2(1); dashed line—�2(1) distribution. B:
Solid line—.5:.5 mixture of �2(1) and �2(2); dashed line—�2(2) distribution. C: Solid line—.470:
.087:.443 mixture of �2(3), �2(4), and �2(5); dashed line—�2(5) distribution. D: Solid line—.243:
.506:.251 mixture of a �2(5), �2(6), and �2(7); dashed line—�2(7) distribution. E: Solid line—.209:
.288:.291:.212 mixture of �2(0), �2(1), �2(2), and �2(3); dashed line—�2(3) distribution. F: Solid
line—.169:.343:.318:.170 mixture of �2(0), �2(1), �2(2), and �2(3); dashed line—�2(3) distribution.
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H0: � � � �11

0 0 � against H1: � � � �11

�21 �22
�,

with � being positive semi-definite.10

Distribution. The correct asymptotic distribution of the
LR statistic is a mixture of k � 1 � 2 distributions in this
case with u � 1 and u � 1 � 2 degrees of freedom,
respectively, instead of the standard �2(2) distribution.

Weights. Because there is only one boundary parame-
ter, the weights are the same as in Case 1 (i.e., .5:.5), and the
asymptotic distribution is a .5:.5 mixture of a �2(1) and a
�2(2) distribution, respectively.

Consequences. Figure 2B presents a graph of both the
mixture distribution and the �2(2) distribution. The correct
critical value is equal to 5.14 (� � .05)—that is, P��� 2

� 5.14	 � .05—whereas the corresponding critical value
of the �2(2) distribution has a nominal p value of .032—that
is, P��� 2 � 5.99	 � .032.

Case 3

A simultaneous test of individual differences in both
linear and quadratic growth implies n � 1 and k � 2, as well
as hypotheses

H0: � � � �11

0 0
0 0 0

� against

H1: � � � �11

�21 �22

�31 �32 �33

�,

with � being positive semi-definite.
Distribution. Given u � 3 unconstrained parameters of

interest (�21, �31, and �32) and k � 2 parameters on the
boundary, the correct asymptotic distribution of the LR
statistic is a mixture of �2(3), �2(4), and �2(5) distributions,
instead of a �2(5) distribution, because there can be 0, 1, or
2 parameters on the boundary.

Weights. The weights depend on the data and can be
calculated by means of analytical computation (e.g., inte-
grating the multivariate normal distribution of the parameter
estimates based on the correlations between the parameter
estimates) or by means of Monte Carlo simulation for each
specific situation.

Consequences. The critical values depend on the infor-
mation matrix and thus on the covariances between the
parameters. To illustrate how such a mixture distribution
might look in a specific sample, Figure 2C presents a graph
of the .470:.087:.443 mixture of �2(3), �2(4), and �2(5)
distributions, respectively, as well as the �2(5) distribution
obtained on an analysis of a quadratic LGC on the Curran
(1997a) data (see A Worked Example, below). The critical
value in the correct distribution is equal to 9.85 (� � .05),
compared with 11.07 in the standard �2(5) distribution.

Case 4

In the case of a simultaneous test of individual differences
in growth in two processes, n � 2, and k � 2, so there are
two parameters on the boundary and u � 5 unconstrained
parameters of interest (�21, �32, �41, �42, and �43). The
hypotheses to be tested are

H0: � � �
�11

0 0
�31 0 �33

0 0 0 0
� against

H1: � � �
�11

�21 �22

�31 �32 �33

�41 �42 �43 �44

�,

with � being positive semi-definite.
Distribution. The correct asymptotic distribution of the

LR statistic is therefore a mixture of k � 1 � 3 chi-square
distributions with u � 5, u � 1 � 6, and u � 2 � 7 degrees
of freedom, respectively, instead of the standard �2(7)
distribution.

Weights. The weights and thus the consequences de-
pend on the data (see Case 3). Figure 2D presents a graph of
the .243:.506:.251 mixture of �2(5), �2(6), and �2(7) distri-
butions and the �2(7) distribution obtained on an analysis of
a bivariate LGC on the Curran (1997a) data. The critical
value in the correct distribution is equal to 12.74 (� � .05),
compared with 14.07 in the standard �2(7) distribution.

Testing the Latent Correlation in the Common
Factor Model

The CF model is obtained by

y � � � �� � �, and (8)

� � � � �, (9)

with covariance and mean structure

� � ���� � 	ε, (10)


y � � � ��, and (11)


 � �, (12)

and we define an m-CF model to contain m common factors.
Without further restrictions, the mean structure and covari-
ance structure implied by the model cannot be identified.
Identification of the mean structure may be obtained either
by constraining the latent variable means � to zero or by
constraining a different intercept in vector � to zero for each

10 See Case 2 of Stram and Lee (1994).
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latent variable in the model. Identification of the covariance
structure may be obtained either by constraining the latent
variable variances in � to one or by constraining a factor-
loading in � for each factor to one. Because the mean
structure is usually not of interest in this type of single-
group CF model, we arbitrarily obtain identification by
constraining the latent means � to zero. To keep the sub-
sequent discussion on parameter bounds simple, we obtain
identification of the covariance structure by constraining the
latent factor variances to one. This constraint implies � to
be a q � q correlation matrix.

Given a 2-CF model, for instance, it may be of interest to
determine whether a 1-CF model might have been sufficient
to explain the relations among the observed variables. This
may be done by testing whether the latent factor correlation
is significantly smaller than one. Implicit in this test is the
assumption that a 1-CF model is statistically equivalent to a
2-CF model with a perfect correlation between the factors.
Under appropriate identification conditions, Van der Sluis et
al. (2005) showed that a q-CF model with k independent
factor correlations constrained to one is statistically equiv-
alent, in general, to a (q � k)-CF model, and they provided
a detailed exposition of the appropriate constraints to spec-
ify such models. Another example of a commonly encoun-
tered test situation is the test of a 3-CF model against a 1-CF
or 2-CF model.

Case 5

In the case of a test of a 2-CF model against a 1-CF
model, there are u � 0 unconstrained parameters of interest
and k(k � 1)/2 � 1 boundary parameter. The hypotheses to
be tested are

H0: � � � 1
1 1 � against H1: � � � 1

�21 1 �,

with � being positive semi-definite (i.e., H0: �21 � 1
against H1: �1 � �21 � 1; see Van der Sluis et al., 2005).

Distribution. The correct asymptotic distribution is a
mixture of a point mass at zero and a �2(u � 1 � 1), instead
of a �2(1), distribution.

Weights. The weights and consequences are the same as
in Case 1.

Case 6

In the case of a test of a 3-CF versus a 1-CF model, the
situation contains k(k � 1)/2 � 3 boundary parameters and
u � 0 unconstrained parameters of interest. In other words,
there can be 3, 2, 1, or 0 parameters on the boundary under
H1. The hypotheses to be tested are

H0: � � � 1
1 1
1 1 1

� against H1: � � � 1
�21 1
�31 �32 1

�

with � again being positive semi-definite (i.e., H0: �21 � 1,
�31 � 1, �32 � 1, against H1: �1 � �21, �31, �32 � 1).

Distribution. The correct asymptotic distribution is a
mixture of k(k � 1)/2 � 1 � 4 distributions with degrees of
freedom equal to u � 0, u � 1 � 1, u � 2 � 2, and u �
3 � 3.

Weights. The weights and thus the consequences de-
pend on the data (see Case 3). Figure 2E presents a graph of
a .209:.288:.291:.212 mixture of �2(0), �2(1), �2(2), and
�2(3) distributions and the �2(3) distribution obtained from
a test of a 3-CF versus a 1-CF model on a covariance matrix
provided in the article by Miyake, Friedman, Emerson,
Witzki, and Howerter (2000). The critical value in the
correct distribution is equal to 5.64 (� � .05), compared
with 7.81 in the standard �2(3) distribution.

Case 7

In the case of a test of a 3-CF versus a 2-CF model, the
situation is more complicated than in Case 6 because the
restriction of the correlation between one pair of factors to
the value of one under the H0 has restrictive implications for
the correlation of each of these two factors with the third
factor: The two correlations should be constrained to be
equal (cf. Van der Sluis et al., 2005). In this case, there is
k(k � 1)/2 � 1 boundary parameter, and because of the
equality constraint on two correlations, there is u � nk/2 �
1 unconstrained parameter of interest. The hypotheses to be
tested are

H0: � � � 1
�21 1
�21 1 1

� against

H1: � � � 1
�21 1
�31 �32 1

�,

with � being positive semi-definite (i.e., H0: �21 � 1,
�31 � �32, against H1: �1 � �21, �31, �32 � 1).

Distribution. Given u � 1 unconstrained parameter of
interest and one boundary parameter, the correct distribu-
tion of the LR statistic is a mixture of a �2(1) and a
�2(2) distribution.

Weights. The weights and consequences are identical to
those of Case 2.

Testing a Quasi-Simplex Model Versus a
1-CF Model

The quasi-simplex model (Jöreskog, 1970) represents a
covariance structure generated by a nonstationary first-order
autoregressive process that can be obtained by Equations 13
and 14.

t � 1 � �t � 1,tt � �t � 1, and (13)
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yt � �tt � εt, (14)

with covariance structure

� � �(I � B)�1�(I � B)�1��� � 	ε. (15)

Here, t is a latent variable at time t, �t � 1,t represents the
regression coefficient between adjacent occasions t � 1 and
t, and �t � 1 is the normally distributed equation residual
added to the model at each occasion. Furthermore, �t is the
factor loading that links the latent variable t to the ob-
served variable yt, and it is fixed to 1.0 in case of single
indicators. The measurement errors, εt, are independent and
normally distributed.

Given the quasi-simplex model, it may be of interest to
test whether a 1-CF model might have been sufficient to
explain the relations among the observed variables. Ro-
vine and Molenaar (2005) have shown that such a test
may be performed by constraining the residual variances
at all time points next to the initial time point, t � 1, at
zero. They showed that t is then reduced to a single ,
whereas the �t � 1,t coefficients are absorbed into the
factor loadings.

Case 8

In the case of a test of a simplex model against a 1-CF
model, there is u � 1 unconstrained parameter of interest,
because the residual at the first occasions is not constrained,
and k � t � 1 boundary parameters. The hypotheses to be
tested are

H0: � � �
�11

0 0
. . . . . . . . .
0 0 0 0

� against

H1: � � �
�11

0 �22

. . . . . . . . .
0 0 0 �tt

�,

with � being positive semi-definite.
Distribution. Because k � t � 1, the asymptotic distri-

bution of the LR statistic is a mixture of t distributions with
u � 0, u � 1 � 1, . . . , u � k � k degrees of freedom,
respectively. In other words, instead of being a �2(k) distri-
bution, the correct asymptotic distribution is a mixture of a
point mass at zero, that is, �2(0), and �2(1), �2(2), . . . ,
�2(k) distributions.

Weights. The weights and thus the consequences de-
pend on the data (see Case 3). Figure 2F presents a graph of
the .169:.343:.318:.170 mixture of �2(0), �2(1), �2(2), and
�2(3) distributions that is obtained below, in the section
entitled A Worked Example, in testing a quasi-simplex
model with four occasions against a 1-CF model. The crit-
ical value in the correct distribution is equal to 5.52 (� �

.05), compared with 7.81 in the standard �2(3) distribution.
Table 2 provides a short overview of values of k and u, the
number of distributions, and the consequences for each of
the eight cases described in this section.

A Worked Example

To illustrate the different steps one should take if a null
hypothesis places the value of the parameter on the bound-
ary of the parameter space, we analyze data taken from the
National Longitudinal Survey of Youth of Labor Market
Experience in Youth, a study initiated in 1979 by the U.S.
Department of Labor to examine the transition of young
people into the labor force. The data were collected using
face-to-face interviews of both mother and child taken in
2-year intervals between 1986 and 1992, making the mea-
surement unit of time equal to 2 years. A detailed descrip-
tion of the data can be found in Baker, Keck, Mott, and
Quinlan (1993) and in Curran (1997a). The measurements
in the present example are from a battery of assessments by
Curran, who presented the complete data of 261 children on
four consecutive measures of children’s antisocial behavior,
reading ability, and one (time-invariant) measure of the
degree of cognitive stimulation provided to the child at
home.11 In this example, we use the data on antisocial
behavior.

Assume that we are interested in testing, first, whether a
quasi-simplex model fits the data well and, second, whether,
if this model holds, it can be constrained to a 1-CF model by
constraining the residual variances to zero (see Rovine &
Molenaar, 2005). This test thus corresponds to Case 8 above
with t � 4 measurement occasions.

The first step consists of testing whether a quasi-simplex
model fits the data. To identify the model, the residuals are
constrained to be equal. The parameter estimates of this
model are presented in the second column of Table 3; the
quasi-simplex model fits the data quite well. The second
step is to estimate the 1-CF model. This can easily be
performed by constraining the residual variances of the
quasi-simplex model to zero (Rovine & Molenaar, 2005).
This constrained quasi-simplex model seems to fit the data
also quite well, and the LR statistic (i.e., ��2) is equal to
6.09.

Standard practice of comparing the LR statistic with a
chi-square distribution with three degrees of freedom with a
critical value of 7.81 (� � .05) would not lead to a rejection
of the null hypothesis that the residual variances are equal to
zero. In other words, we would conclude that the 1-CF
model should not be rejected and that subsequent substan-
tive conclusions should be based on this model.

In the prior sections, we have shown, however, that the
asymptotic distribution of the LR statistic is not the chi-

11 The data can be found in Curran (1997b).
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square distribution with three degrees of freedom because
the null hypothesis places the values of three parameters on
the boundary of the parameter space. In this example, the
distribution of the LR statistic can be obtained by using
Case 8. Because this model consists of t � 4 measurement
occasions, there are k � 3 boundary parameters and no
unconstrained parameters of interest, and the asymptotic
distribution is consequently a mixture of a point mass at
zero and �2(1), �2(2), and �2(3) distributions.

To compute the weights, we used Monte Carlo simulation
to generate 10,000 samples with the parameter estimates of
the constrained quasi-simplex model (H0) as the population
values. Subsequently, the quasi-simplex model (H1) was
estimated in each data set, and because the parameter esti-
mates were saved in a separate file, the weights could be
obtained easily by counting the number of parameters that
were negative in each sample. All three residual variances
were negative, for instance, in 16.9% of the cases, leading to
a weight of .169 for the point mass of zero. The other
weights were .343, .318, and .170 for the �2(1), �2(2), and
�2(3) distributions, respectively. So, the true asymptotic
distribution of the LR statistic in this situation is a .169:
.343:.318:.170 mixture of �2(0), �2(1), �2(2), and �2(3)
distributions. The critical value of this distribution at a
significance level of � � .05 is equal to 5.52. The p value
of the LR test statistic is equal to P(�� 2 � 6.09) � .038. In
other words, the null hypothesis of zero residual variances
(the 1-CF model) should have been rejected if the correct
asymptotic distribution of the LR statistic had been used.

Because sample size was small, we preferred Monte
Carlo simulation of data to obtain the weights. In principle,
however, Monte Carlo simulation of parameters as pro-
posed by Dardanoni and Forcina (1998) could also be used.
To obtain the weights using this procedure, the quasi-sim-
plex model was fitted to the data, and the correlation matrix
of parameters (i.e., the information matrix) was used toT
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Table 3
Parameter Estimates of Quasi-Simplex Model Using the Data
of Curran (1997b)

Parameter
Quasi-simplex

model

Constrained
quasi-simplex

model

�2,1 1.022 (.167) 1.409 (.156)
�3,2 0.924 (.093) 1.035 (.092)
�4,3 1.167 (.100) 1.208 (.097)
�11 1.370 (.278) 0.924 (.185)
�22 0.653 (.308) 0
�33 0.343 (.196) 0
�44 0.298 (.310) 0

ε1 � ε2 � ε3 � ε4 1.326 (.147) 1.621 (.082)
�2(df) 1.094 (2), p � .58 7.193 (5), p � .21
��2(df) 6.099 (3)

Note. These models were refitted to the covariance matrix only. N � 261.
Standard errors are presented in parentheses.
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simulate 10,000 parameter vectors. Subsequently, counting
the times that �22, �33, and �44 were less than zero resulted
in weights of .167, .336, .333, and .165 for the �2(0), �2(1),
�2(2), and �2(3) distributions, respectively. These weights
do not differ significantly from the weights obtained with
Monte Carlo simulation of data as tested by the standard
chi-square test (p � .17). As a consequence, if we compare
the critical values at several significance levels and the p
value of the LR test statistic—P(�� 2 � 6.09)—the differ-
ences appear not to be that large (see Table 4).

A general procedure of the subsequent steps to be taken if
the null hypothesis places the value of the parameter on the
boundary of the parameter space is presented in Table 5.
With the information and explanation provided in this arti-
cle, this figure will be of help in obtaining the correct
distribution of the LR statistic in any situation.

Discussion

The LR test, or chi-square-difference test, is commonly
applied in SEM for testing specific parameters or sets of
parameters. In this article, we have shown, on the basis of
the theory of Shapiro (1985) and Self and Liang (1987), that
there are several common test situations in social research in
which the standard theory underlying the LR statistic does
not hold. In particular, the standard theory does not hold in
SEM if the null hypothesis places values of parameters on
the boundary of the parameter space, as may occur in testing
variances (e.g., in the LGC model or quasi-simplex model)
and in testing correlations (e.g., in the CF model). We have
discussed several important cases of boundary problems in
SEM, and a general procedure to obtain the correct asymp-
totic distribution of the LR statistic has been provided.

It is important to use the correct distribution. If the
standard chi-square distribution is incorrect, this will result
in too conservative a test. To illustrate this, consider Figures
2A and 2B. These figures show that the true distributions of
the test statistic in testing variances or correlations have a
lighter tail than the standard distributions that are commonly
applied. If these standard but incorrect distributions are used
to obtain p values or critical values, there will be a higher

probability of committing a Type II error (i.e., a failure to
reject the incorrect null hypotheses). Consequently, the sta-
tistical power of the standard distributions will be too low.
This can be verified easily by comparing the critical values
of the chi-bar-square distribution for Cases 1–8 with those
of the standard chi-square distributions. The critical values
of the chi-bar-square distribution are lower in all cases.

In the simple case where the information matrix of the
relevant parameters is diagonal (this includes the special
case of a single parameter as the factor correlation in the
2-CF model), the weights of the mixture distribution can be
obtained by means of the binomial expansion. Unfortu-
nately, parameter estimates are rarely uncorrelated. Gener-
ally, the weights may be obtained by means of analytical
derivation or by means of Monte Carlo simulation. Of these
methods, the latter is more practical because it can be
applied regardless of the number of components in the
mixture distributions.

We have also discussed two methods of Monte Carlo
simulation, namely, the simulation of parameter values
(Dardanoni & Forcina, 1998) and the actual simulation of
data. The former is simple to implement, but it is based on
the assumption of multivariate normality of the parameter
estimates. The latter is based on the assumption of multi-
variate normality of the data and does not include the
assumption that the parameter estimates are normally dis-
tributed (although, given a large N, this is likely to be the
case). For another use of data simulation in the context of
SEM, we refer the reader to Muthén and Muthén (2002),
who applied data simulation in the context of power calcu-
lations given missing data.

It is difficult to make general statements concerning the
bias incurred in using the incorrect distribution because this
depends on the specific values of the weights and the
weights depend on unknown parameter values and on the
information matrix of the model under the null hypothesis.
In Case 3, for instance, the correct asymptotic distribution
of the LR statistic is a w3:w4:w5 mixture of �2(3), �2(4), and
�2(5) distributions, instead of a �2(5) distribution. If w5

approaches one, however, in an extreme situation, then w3

and w4 must approach zero, and there will be no bias

Table 4
Comparison of the Weights, Critical Values, and p Values

Monte Carlo
simulation of data

Monte Carlo
simulation of

parameters

Weights of the �2 distribution with 0, 1, 2, and 3 df .169:.343:.318:.170 .167:.336:.333:.165

P(�2 � 6.09) .038 .037

P(�2 � c) � .10 c � 4.06 c � 4.05
P(�2 � c) � .05 c � 5.52 c � 5.48
P(�2 � c) � .01 c � 8.88 c � 8.68

Note. The differences between the weights are not significant at an alpha level of .05 (p � .17).

451LR TESTING IN SEM WITH PARAMETERS ON THE BOUNDARY



because the mixture distribution is equivalent to a �2(5)
distribution. The smaller w5 becomes, the larger the bias
will be.

As the true asymptotic distribution of the LR statistic in a
test containing boundary parameters, the chi-bar-square dis-
tribution could be said to have greater statistical power
compared with the traditional distribution of the LR statistic
with degrees of freedom equal to differences in the number
of constraints. Strictly speaking, though, the power is not
greater but, rather, simply more accurate. However, because
it has never been applied in the practice of SEM before, tests
of interindividual differences in the growth parameters of
LGC models are likely to have been too conservative in the
past. Stated otherwise, it may have been concluded too often
that no interindividual differences existed where they truly
did exist. Similarly, the standard LR test is biased toward
the 1-CF model compared with a quasi-simplex model or a
more complex CF model. The world is likely to be more
complex than standard LR tests have suggested. It must be
stressed that these conclusions are based on the assumptions
of perfectly multivariate normally distributed data and large
enough sample sizes, conditions that are often violated in
practice. Under such nonidealized conditions, the LR is not
generally chi-square distributed, which may also render the
chi-bar-square distribution inappropriate.

Several issues remain to be discussed at this point. First,
an important issue that may pop up is whether it makes a
difference if a boundary constraint is implicit in the com-
parison of two models versus when it is explicitly imposed
by means of an inequality constraint. An implicit constraint
may result in an inadmissible solution (e.g., it may provide
a negative estimate of a variance parameter), and one has to
constrain such a parameter estimate to the closest value of
the admissible parameter space (the ad hoc approach) and
reestimate the model before interpretation of its parameters.
On the other hand, if an inequality constraint is modeled
explicitly, the parameter estimate will always be within the
parameter space. In practice, both approaches provide ap-

proximately the same parameter estimates, and therefore,
the value of the LR statistic for testing the specific param-
eter will also be the same. Most software packages, such as
Mplus (Muthén & Muthén, 2004) and LISREL (Jöreskog &
Sörboom, 2001; with ad�off), do allow for negative
variances, whereas other packages do not allow for negative
variances by default. If a package allows for negative esti-
mates of a variance parameter, this information can be
easily used in a Monte Carlo simulation of data to estimate
the weights of the chi-bar-square distribution, as we have
illustrated in the prior sections. Of course, the weights can
also be obtained by Monte Carlo simulation of parameters
based on the information matrix. Some software packages
(e.g., the MIXED procedure of SAS) stop running when an
inadmissible parameter estimate is encountered during es-
timation. The consequence of this is that the asymptotic
distribution is somewhat different because the user is forced
to simplify the model by dropping the inadmissible estimate
and all associated parameters from the model (Stram & Lee,
1994, p. 1176). In our Case 2, for instance, the asymptotic
distribution would be a .5:.5 mixture of a �2(0) and a �2(2)
distribution because both the variance and the covariance
are dropped.

A second issue is that the problem of boundary parame-
ters is not specific to the LR test but may also affect other
tests. Because of their asymptotic equivalence to the LR
test, the Wald test and score tests will suffer the same
problem if boundary parameters are present. Also, as noted
by Dominicus et al. (2006), other goodness-of-fit measures,
such as the Akaike information criterion (AIC; Akaike,
1987), the Bayesian information criterion (BIC; Schwartz,
1978), and the root-mean-square error of approximation
(Browne & Cudeck, 1992), will be affected. AIC and BIC
cannot be computed because the number of degrees of
freedom in the model is not known. How these fit measures
are affected precisely, as well as the relationship with con-
ditional testing (Moreira, 2003), will be the topic of future
work.

Table 5
Steps to Be Taken in Deriving the Asymptotic Distribution of the Likelihood Ratio (LR) Statistic

Step

1. Estimate the model under the alternative hypothesis (H1), and estimate the model under
the null hypothesis (H0).

2. Compute the LR statistic of testing H0 against H1.
3. Decide whether this test contains boundary parameters.
4. Determine the number of boundary parameters and unconstrained parameters of interest

and, subsequently, the number of degrees of freedom of the mixture distribution.
5. Simulate 10,000 replicate datasets under the null hypothesis (H0).
6. Estimate H1 in each replicate.
7. Compute the weights by counting the number of boundary parameters that hit the

boundary in each replicate analysis.
8. Compute the p value of the LR test statistic, or compute critical values.
9. Perform the hypothesis test.
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Third, it is important to note that the use of the Lagrang-
ian multiplier, or modification index (MI), also needs a
slight adaptation for boundary parameters. It is very impor-
tant to always use the expected parameter change (EPC)
together with an MI. If the EPC is such that the value of the
parameter falls outside the admissible parameter space (e.g.,
a negative EPC in the case of a variance parameter), the MI
provided by the program is not meaningful and should be
set to zero. If the EPC indicates an admissible change, the
MI is meaningful but should be related to a .5:.5 mixture of
a �2(0) and a �2(1) distribution (corresponding to Case 1 of
Section 3), with a critical value of 2.71 instead of 3.84 (� �
.05).

Fourth, we have focused here on the asymptotic distribu-
tion of the LR for testing one or more boundary parameters
and not on the LR as a test of overall goodness of fit. The
reason for this is the following. In the case of a test of
overall model fit, the null hypothesis represents the model
that we have posited and states, among other things, that all
variance parameters are greater than or equal to zero. How-
ever, we do not know the true value of the parameters under
the null hypothesis, and the theory of Self and Liang (1987)
and Stram and Lee (1994, 1995) does not apply. The value
of LR for overall goodness of fit will be chi-bar-square
distributed, but the nature of this distribution is not known
and cannot be inferred easily by means of standard theory.
In the commonly encountered situation of a test of overall
model fit, our advice is to be conservative by constraining
parameter estimates that lie outside the admissible parame-
ter space by means of the ad hoc approach, and to test the
overall goodness of fit of this constrained model with the
degrees of freedom of the unconstrained model. Alterna-
tively, the parametric bootstrap (Bollen & Stine, 1993)
could be used for overall model fit testing. In a simulation
study, Galindo-Garre and Vermunt (2004) showed that the
parametric bootstrap provides correct p values for log-linear
models with explicit inequality constraints. The issue of
overall model fit with inequality constraints calls for further
research.

The general issue discussed in this article is not isolated
but is part of a larger family of order-constrained inferences.
In general, inequality constraints make a difference in every
aspect of statistical testing (Geyer, 1995). Many procedures
thought to be well understood become problematic when
inequality constraints are introduced. Fortunately, sophisti-
cated statistical inference has been developed to address
these problems. Whereas this methodology should be com-
monplace, it is rarely used in practice (Iverson, 2005). Here,
we have shown how inequality constraints make a differ-
ence in testing relatively standard structural equation mod-
els. These models contained inequality constraints from the
start, albeit this fact has not been commonly acknowledged.
Apart from this, we believe that inequality constraints may
be of great utility in SEM in general because such con-
straints may express prior information explicitly (see

Klugkist, Laudy, & Hoijtink, 2005). In factor analysis, for
instance, factor loadings may be required to be nonnegative
or may be constrained to be greater than others on the basis
of the item content. Including such information in SEM may
lead to appreciable increases in statistical power.
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Appendix

The Asymptotic Distribution of the Likelihood Ratio

Estimation of the model parameters in structural equation
modeling is often performed using the maximum-likelihood
(ML) method under the assumption of independence of the
cases and of multivariate normality. Estimates are obtained
by minimizing the log-likelihood ratio function Fml � (N �
1) � {[(Y � 
y)��

�1(Y � 
y)] � [log|�| � log|S| �
tr(��1S) � p]} (cf. Browne & Arminger, 1995; see also
Widaman & Thompson, 2003, p. 17), where N is the sample
size, Y is a column vector of sample means of the p
indicators, S is the p � p sample covariance matrix, |.|
denotes the determinant of a matrix, and tr is the trace
operator that returns the sum of diagonal elements of a
matrix.A1 The p � p covariance matrix � and the p-dimen-
sional vector 
y are the implied covariance matrix and mean
vector, respectively. Fml is bounded below by zero and
equals this value only if both Y � 
y and � � S.

To show the distribution of the LR statistic in the case of
a test that contains boundary parameters, let � be a param-
eter vector that belongs to the parameter space �. Suppose
that the true parameter value, denoted by �0, lies on the
boundary of the parameter space under the null hypothesis
�0 and under the alternative hypothesis �1. To find the
asymptotic distribution of the likelihood ratio (LR) test
statistic �2ln (Fml), it is assumed that the parameter space
can be approximated by a convex cone. This is a set of
points in which any linear combination of points of the cone
also belongs to the cone. We need our set of parameters to
be a convex cone to define the distance function. The
theorem of Self and Liang (1987) provides the following
general solution.

Theorem 1: Let Z be a random variable with a multivar-
iate normal distribution N(�, I�1�0), and let C�o and C�1 be
nonempty cones approximating �0 and �1 at �0, respec-

tively. Then, under usual regularity conditions (Self & Li-
ang, 1987, p. 605), the asymptotic distribution of the LR
statistic, �2ln (Fml), is the same as the asymptotic distribu-
tion of the LR test of �  C�1 (i.e., the model under H0)
versus the alternative �  C�1 (i.e., the model under H1)
based on a single realization of Z if � � �0 (i.e., if H0 is
true).

Note that the regularity conditions mentioned in this
theorem ensure that the test statistic, �2ln (Fml), is asymp-
totically chi-square distributed only if there are no param-
eters on the boundary under H0. The asymptotic distribution
of the LR mentioned in Theorem 1 may be written as

sup
�C���0

� � �Z � �)�I�1 [�0](Z � �)}�

sup
�C�0��0

� � �Z � �)�I�1[�0](Z � �)}. (A1)

The first term in Equation A1 is related to the likelihood
of the model under the alternative hypothesis (i.e., the
unconstrained model) and the second term to the likelihood
of the model under the null hypothesis. In this article, �
contains the variances and covariances of the latent vari-
ables in a structural equation model (in standard LISREL
language, they are the elements of matrix �).

A1 We limit our presentation to the single-group ML function based on
summary statistics. The extension to a multigroup model and the formu-
lation of the ML function for raw data analysis (e.g., in the case of missing
data) are trivial.
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